Swedish researchers discover a cheaper way to produce hydrogen from water

Scientists at KTH Royal Institute of Technology in Stockholm have unlocked a major barrier to exploiting hydrogen as a source of renewable energy.
Swedish researchers discover a cheaper way to produce hydrogen from water

The research team led by KTH Professor Licheng Sun is one of many worldwide searching for cheaper alternatives to precious metals for large-scale water splitting. If a cheap, stable and efficient way could be found to produce hydrogen from water, a hydrogen-fuel economy could finally become a reality. 

The best-performing catalysts for electrochemical oxidation, or "water splitting", that is to say, precious metals, are expensive. This has led the research team to seek cheaper alternatives. Professor Licheng Sun has already developed molecular catalysts for water oxidation with an efficiency approaching that of natural photosynthesis. Last week, his team reported in Nature Communications that it has discovered that a new material composed of common earth-abundant elements could be used as a catalyst for water splitting, which could help change the economics of large scale hydrogen fuel production. 

Researcher Ke Fan says that the new material is a monolayered double hydroxide involving nickel and vanadium, which offers a state-of-art electrocatalyst for water oxidation. The low-cost, highly efficient nickel-vanadium monolayer outperforms other electrocatalysts that are composed of non-precious materials, Fan says. And it offers a competitive, cheap alternative to catalysts that rely on more expensive, precious materials, such as iridium oxide (IrO2) or ruthenium oxide (RuO2).

“This is the first time that the metal, vanadium, has been used to dope nickel hydroxide to form a water oxidation catalyst, and it works very well — even beyond our expectations” Fan said. “No doubt this material can greatly expand the scope of non-precious metal elements of electrocatalysts, and it opens new areas for water splitting.”

One possibility the discovery raises is large-scale production of hydrogen fuel using Sun's catalyst. The material possesses a layered structure with monolayer nickel-vanadium oxygen polyhedron connected together with a thickness below 1 nanometer, according to researcher Hong Chen, who added that the monolayer feature not only increases the active surface area, but also enhances the electron transfer within the material.

Sun expects the research to “open a new area of low-cost water oxidation catalysts, featuring stability and efficiencies that equal or even surpass some of today’s best catalysts including RuO2 and IrO2.”

For additional information:

KTH Royal Institute of Technology

Add a comment